Indestructible Weakly Compact Cardinals and the Necessity of Supercompactness for Certain Proof Schemata

نویسندگان

  • Arthur W. Apter
  • Joel David Hamkins
چکیده

We show that if the weak compactness of a cardinal is made indestructible by means of any preparatory forcing of a certain general type, including any forcing naively resembling the Laver preparation, then the cardinal was originally supercompact. We then apply this theorem to show that the hypothesis of supercompactness is necessary for certain proof schemata.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J ul 1 99 9 Indestructible Weakly Compact Cardinals and the Necessity of Supercompactness for Certain Proof Schemata ∗

We show that if the weak compactness of a cardinal is made indestructible by means of any preparatory forcing of a certain general type, including any forcing naively resembling the Laver preparation, then the cardinal was originally supercompact. We then apply this theorem to show that the hypothesis of supercompactness is necessary for certain proof schemata.

متن کامل

Inner models with large cardinal features usually obtained by forcing

We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ ...

متن کامل

Indestructibility and stationary reflection

If κ < λ are such that κ is a strong cardinal whose strongness is indestructible under κ-strategically closed forcing and λ is weakly compact, then we show that A = {δ < κ | δ is a non-weakly compact Mahlo cardinal which reflects stationary sets} must be unbounded in κ. This phenomenon, however, need not occur in a universe with relatively few large cardinals. In particular, we show how to cons...

متن کامل

Indestructibility, Strong Compactness, and Level by Level Equivalence

We show the relative consistency of the existence of two strongly compact cardinals κ1 and κ2 which exhibit indestructibility properties for their strong compactness, together with level by level equivalence between strong compactness and supercompactness holding at all measurable cardinals except for κ1. In the model constructed, κ1’s strong compactness is indestructible under arbitrary κ1-dir...

متن کامل

Strongly unfoldable cardinals made indestructible

Strongly Unfoldable Cardinals Made Indestructible by Thomas A. Johnstone Advisor: Joel David Hamkins I provide indestructibility results for weakly compact, indescribable and strongly unfoldable cardinals. In order to make these large cardinals indestructible, I assume the existence of a strongly unfoldable cardinal κ, which is a hypothesis consistent with V = L. The main result shows that any ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Log. Q.

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2001